2014. január 18., szombat

Ping-conf Day 2

A második nap a Ping-conferencián hozta az első nap színvonalát. Yevgeniy Brikman izgalmas demóval egybekötött előadása mindenkit lázba hozott korán reggel. Prezentációját azzal kezdte, hogy elmesélte, hogy másfél éve használják a Play Frameworköt LinkedInnél több mint 60 projekthez nagy sikerrel. Megnevezett két problémás területet tapasztalataik alapján:
  • Nehezen kezelhető komplexitás (szerintem ez nem feltétlen csak Playben jött volna elő az ő esetükben)
  • Borzalmas teljesítmény
Az első ponttal kapcsolatban megmutatta, hogy a LinkedIn oldalán rengeteg apró kis tartalmi rész van, amik ráadásul eltérnek a különböző felhasználó típusonként (újonc, prémium, etc), ezért nem lehetséges egyetlen kontrollerbe tenni a logikát (hecc kedvéért kipróbálták, és a fordító elszállt a scala fájl méretére hivatkozva). A megoldás, amit használnak, hogy minden egyes kis doboz önállóan is él, tehát van saját kontrollere, nézete, meg minden ami kell. Nagy előnye a módszernek, hogy nagyon könnyen tesztelhető, továbbá nagyon könnyen skálázható vízszintesen, ugyanis az egyes modulok szétoszthatóak több szerver között. A publikus oldalak kontrollereiben pedig egyszerűen legenerálják az egyes részeket, és összefűzik a kiszolgálandó HTMLbe. A technika hátulütője, hogy a statikus erőforrásokat a kontrollerben kell kezelni (szerk,. megj. illetve nem lehet ezen erőforrások tömörítését, egybefűzését valamilyen pluginnel leegyszerűsíteni).
Ezt a fragmentációs technikát választva az alábbiak igényelnek külön odafigyelést:
  • Cookiek esetén szükségük van egy metódusra, ami a darabkák headerjeiből összefűzte a Cookie bejegyzéseket
  • Statikus erőforrások beillesztésére szintén a headerbe kell tenni  X.CSS ill. X-JS bejegyzéseket, amit aztán összefűznek, deduplikálják, és a HTML headbe tesznek (erről később, hogy miért pont oda)
  • Hibakezeléshez a legfelső réteg kiolvassa a darabkák státsz-kódját
Miután végigmentünk a komplexitás témakörén, áttértünk a teljesítmény problémákra. Első lépésben átalakította az alkalmazást, hogy a hagyományos String alapú HTML generálás helyett streamelje a kimenetet. A Scala nyelvben vannak natív eszközök, mindössze egy custom render templatet kellett bekötni a Playbe (az alapértelmezett StringBuildert használ), és az Enumerator, Future párossal megoldotta, hogy a szerver az előállított HTMLt azonnal küldte is a kliensnek. Akit érdekel részletesebben a dolog itt tud utánaolvasni. Ez azért növeli a teljesítményt, mert a HTML headben elhelyezett erőforrások letöltésével nem kell a kliensnek megvárnia, amíg minden kis darabka összeáll. Következő trükk, amivel tovább fokozta a teljesítmény és a felhasználói élményt eléggé leleményes. A darabkák kimenetét a HTML bodyn kívülre, egy script type="text/html-stream" elembe tette, majd JavaScripttel a helyükre illesztette, amikor végzett velük a szerver. A módszer előnye, hogy nincs szükség darabonként egy AJAX kérésre, így tehermentesíthető a szerver, mégis a felhasználó azonnal kap választ a kérésére. Amire érdemes odafigyelni, hogy a hirtelen a helyükre kerülő elemek miatt ugrálhat az oldal, megzavarva ezzel az éppen kattintani vágyó felhasználót, valamint a headerek már a kérés elején kiküldésre kerülnek, ezért azokat a kérés további részében nem lehet változtatni. Nehezebb az oldalt tesztelni, és SEO problémák is felmerülhetnek. A demóalkalmazás egyébként elérhető githubon.

A következő prezentációt James Proper tartotta, aki szintén a teljesítmény-optimalizációt választotta témájául. Az első dolog, amit szép teljesítmény-tesztekkel bemutatott, hogy az aszinkron nem egyenlő a gyorsasággal, sőt! Egy egyszerű példán keresztül bebizonyította, hogy az aszinkron kérés mennyivel tud lassabb lenni a sok context switch miatt, amik elveszik a drága processzoridőt. Folytatásként több módszert is bemutatott, amivel növelhető a teljesítmény, és elkerülhető a rengeteg context switch.
  • Az első javaslata az volt, hogy használjuk a Scala beépített ExecutionContextjét, ami a Java Fork/Join osztályaira épül. Bővebben
  • Második lehetőségként azt ajánlotta, hogy ne használjuk az első pontban említett contextet, hanem váltsunk ImmediateExecutionContextre
Általános jó tanácsként említette, hogy sose használjunk blokkolt erőforrásokat ExecutionContextek használatakor, ha mégis szükségünk van rá, akkor inkább konfiguráljunk menetirányítókat típusonként (na jó ezt senki sem érteni :) "Configure dispatcher per type"). Mivel az Akka tud ilyet, és a Playben van beépített Akka, adja magát, hogy azt érdemes használni.
Kiemelte azt is, hogy nagyon nagyon nagyon nagy weboldalaknál lehet teljesítmény-növekedést elérni, ha a routingot több különálló fájlba tesszük, és egy custom router megírásával csak a megfelelő fájlt dolgozzuk fel, amikor a kérés beérkezik. A gyorsulás oka, hogy a  Play regexpeket illeszt az URI-re, és ha több száz illesztést kell csinálnia, mire a route fájl végén megtalálja a keresett bejegyzést, az felesleges processzor-terhelést jelent. A futtatott benchmarkoknál pár százalékos teljesítmény-növekedés volt mérhető.


A teljesítmény optimalizációs témaköröket elhagyva a következő előadást ismét  Julien Tournay és Pascal Voitot tartotta, és témája a Scalaz-Stream volt. A prezentáció lényege pár mondatban összegfoglalva annyi, hogy miként lehet streamek fogadására lecserélni a jelenleg is működő Iteratee megoldást Playben erre, az egyébként még fejlesztés alatt álló, megoldásra. A prezentációban egyetemi előadásokra emlékeztető részletességgel  mesélték el többek között, hogy miért is jó ez az újfajta megközelítés, hogy milyen problémákba ütközhetünk a HTTP, és a WebSocket eltérősége miatt, stb.


Ebédszünet előtt még Adam Evans és Asher Glynn tartott egy (számomra nem annyira érdekes) előadást arról, hogy milyen tapasztalataik voltak, amikor a BBC gyerekeknek szóló PHP-s megoldását lecserélték Play frameworkre. Architekturálisan volt egy PHP frontendjük, ami a BBC Java-s backendjéhez fordult adatokért. Ami miatt a Playre esett a választásuk:
  • Mert Scala, ezt nem is fejtették ki bővebben
  • Full stack web-framework
  • Reaktív, könnyű benne non blocking szolgáltatásokat készíteni és hívni
  • Typed safe template rendszer eléggé awesome
  • Sok vállalat használja, és zizeg az egész
Miután kiválasztották a keretrendszert csináltak egy pilot projektet, ami nagyon jól sikerült, a PHP fejlesztőknek könnyű volt átszokni Scalára, és mindenki boldog.


A sponsor pitch után következő előadás igazán érdekes volt. Grant Klopper a The Guardian hírportál frontendjét kiszolgáló alkalmazásról beszélt, milyen problémákkal kell szembenézniük, milyen megoldásaik vannak, stb. Elmesélte, hogy naponta három Budapestnyi ember látogatja meg a weboldalukat, átlagosan mindegyik megnéz három oldalt. 900 kérést kell kiszolgálniuk minden másodpercben. A rendszer teljesen nyílt forrású, és elérhető a githubon, sőt nem csak elérhető, hanem konkrétan onnan buildelik a live rendszert. A teljes frontend letölthető egyetlen futtatható jar fájlként, és elindítható a java -jar frontend-artifact.jar paranccsal. A rengeteg kérés miatt mindent cachelnek, és a rendszer garantálja, hogy nem töltődik be sohasem ugyanaz a tartalom kétszer, a második kérés mindenféleképpen cache hit lesz. Beszélt továbbá még a deployment folyamatukról is, ami abból áll, hogy elindítanak három új verziót, regisztrálják őket a load balancerbe, majd lekapcsolják a régi hármat. Előadás után külön odamentem hozzá, és rákérdeztem miként kezelik azt a szituációt, amikor az összes node fut, de valami kódváltozás miatt a cachelt elem is megváltozik, és a régi verzióknak még a régit kell kiszolgálniuk, az újaknak pedig már az újakat. Dolgozom elosztott szinkron cachel, és ez nálunk bizony okoz problémát és fejfájást, éppen ezért mi kikapcsoljuk a cachet egészen addig, amíg minden nodeon az új verziójú szoftver nem fut. A válasz egész egyszerűen annyi volt, hogy sehogy. Azt mondta, hogy olyan rövid ideig fordulhat elő ez az eset, és a magas kérésszám miatt a statisztikában meg sem jeleni az a pár hibás kérés.


Utolsó előtti előadást Tobias Neef tartotta a kontrollerek absztraktálásának lehetőségeiről a Playben, hogy a lehető legjobban elkerülhessük a kódismétlést. Pár pontban összeszedve a lényeg:

A konferencia Johan Andrén előadásával zárult, aki a különböző aszinkron lehetőségekről beszélt Scala és Java platformokon. Először a problémára világított rá Johan, miszerint az általunk írt kód a kiszolgálási idő nagyon kicsi részében van végrehajtási fázisban, és az idő nagy részét különböző erőforrásokra való várakozással tölti. Tegyük fel, hogy ha van 20 adatbázis, és 200 kiszolgáló szálunk, akkor a 200 + 1-edik adatbázist nem használó szál nem lesz kiszolgálva. A problémára háromféle megoldást mutatott be.
Az első, használjuk bátran a Future és Promise osztályokat (részletes információt itt találsz). Hátrányának azt nevezte meg, hogy amikor több rétegen keresztül dobáljuk a Future osztályokat, a rétegek között állandó jelleggel konvertálni kell azokat. Például egyik szerviz visszatér a userek listájával, de a hívónak JSON listát kell visszaadni, amit az őt hívónak HTML kóddá kell alakítani, stb. stb. Javaslata szerint az alábbi esetekben érdemes ezt a megoldás választanunk:
  • Amikor más szolgáltatásokkal kommunikálunk
  • Párhuzamos végrehajtásra, amikor a szálak teljesen elkülöníthetők egymástól
  • Egyszerű háttérszolgáltatások implementálásakor
Utóbbi esetre nem tenném a nyakam, Tomcat esetén mivel a kiszolgáló szál referenciát őriz a Future objektumra szépen bevárja annak végeredményét, szóval én nem javaslom ezt a kombinációt.
Következő lehetőségként az Akka Actorsokat vetette fel, segítségével esemény vezérelt programozást tudunk megvalósítani. Az eljárás lényege, hogy van egy bemenő sor, amibe be tudják a kiszolgáló-szálak küldeni a kéréseket, és a rendszer egy szálon szépen sorban végrehajtja azokat. A technika nem sebességéről híres, blokkolja a többi futó szálat, de cserébe jól skálázható. Mikor használjuk:
  • Amikor állapotokra van szükségünk
  • Adat streamelés
  • Esemény vezérelt programozásra
  • Háttérfolyamatok végzésére
Utolsó lehetősségként a Iteratee-k használatát mutatta be. Sajnos ennek nincs Java-s megfelelője, a Chunks API tud valami hasonlót, de képességei messze elmaradnak a Scala natív megoldásától. A dolog lényege, hogy pici szeletekben adható át a feldolgozásnak az adat (Enumerators), és a rendszer lényegében reagál az adatra, és várja a következő darabkát.
  • Enumerator[A] -> Iteratee[B, R]
  • Enumerator[A] -> Enumeratee[A, B] -> Iteratee[C, R]
Lényeges külömbség a hagyományos feldolgozással szemben, hogy az első hibás darabka esetén már lehet kezelni a hibát, nem kell a teljes adatfolyamot megvárni.
Mikor használjuk:
  • Streamel adatok esetén

A konferencia végére igencsak megfogyatkozott a létszám, láthatóan mindenki kellőképpen elfáradt. Meg kell hagyni, hogy elég tartalmasak voltak az előadások, szóval le a kalappal a szervezők előtt, nem bízták a véletlenre a mentális zombiságunkat. Gratula ezúton is.